摘要我们的未来是什么样的?一直以来有这样的争辩:一方认为人是万物的尺度;一方认为机器人也应当被纳入衡量的体系当中。本文以STA(感知—思考—行动)范式为讨论基础,并以一系列研究来证明:人类与机器人难辨彼此的可能性未来,在这一未来图景中,机器能比它们被认为的更具创造性,或者人类直觉可能比我们想象的更具有机械性。机器人和人类共同成为一个二元体系使得他们成为彼此的衡量尺度。
关键词后人类;智能机器;STA范式
探索未来对当下的影响无疑颇具启发性,但是至今还无人写出这类书。如果有一本名为《21世纪对于19世纪的影响》的书,谁不希望一睹为快呢?这本想象中的书无疑将证实人类对未来的愿景,特别是对技术先进时代的愿景,可以极大地影响当下的发展。尤其令人感兴趣的是,最近有一批研究展现了这样一种可能性:未来人类和智能机器将从本质上难辨彼此。通过神经植入、量子计算和纳米技术等新兴技术,在不到100年间,人类将得以在计算层面上增强,计算机的回应则变得人性化。Ray Kurzweil认为,我们可以预期,人类和计算机均将变得不再符合现在人们的标准(Ray,1999,p.280)。这些未来的实体将通过思维(mind)从一个物理介质转移到另一个物理介质而实现不朽,并以一种难以被归类为人还是机器的形式呈现出来。
然而,正如Kurzweil自己所承认的那样,没有什么比预测未来问题更大的了。如果以过去我们所做过的预测记录为鉴的话,我们几乎可以肯定:当未来降临,它将与我们所预期的未来不同。准确预估遥远未来屡屡受挫,因此我的兴趣不是要进行这种推测,而是要探索这种预测对我们当下概念的影响。在这里,我想说的是,我并不想做一个长期预测的冒险游戏,而是希望论证我们现在如何理解人类思考、行动和感知,简而言之,我们如何理解人之为人的意义。
物质文化是塑造我们对于“人性”(human nature)观点的复杂互动之一。人类学家早就认识到,人造物和生活空间的构建影响了人类进化。人类学家认为,赋予人直立行走能力的人类骨骼变化,与运输物品的能力是同步进化的,从而促进了技术的发展。无须参考像基因工程这样当代的、奇异的事物,我们就能认识到,几千年来,一个双循环现象一直在发挥作用:人类创造物体,物体反过来有助于塑造人类。这种古老的进化过程随着智能机器的发明而展开了新的局面。正如Turkle(1984)在她关于儿童如何与智能玩具互动的研究中表明,展现有人类特征的人造物成为我们重新定义自我形象的镜子,或“第二自我”。我们现在的模拟、软件和机器人都远远不及人类(尽管在有些方面它们超越了人类能力,例如从大数据集中检测到细微模式)。尽管如此,与开发此类事物最为密切相关的研究人员也始终坚持一种口径,即首先人类行为是设计机器的灵感,然后通过反馈循环的反向作用,在机器的启发下重新解释人类行为。
为了说明这一过程并探索其含义,我将聚焦人工智能领域中著名的STA(感知—思考—行动,Sense-Think-Act)范式。研究人员专注于STA的原因不言而喻:它定义了实体与世界互动所需的必要行为。感觉令实体得以感知世界,而认知处理感官数据并为下一步行动做准备。
在STA模式的每个节点上,我们将看到类似的机制在起作用,尽管也存在着使不同研究项目得以相互区分的重要差异。三个节点都始终具备这种趋势,即从相对简单的机械行为推断到复杂得多的人类境况,然后从智能机器角度出发重新描述人类。我们了解到,这些机器构成了一个新的进化群,它将与智人(homo sapiens)处于同等地位;Menzel和DAluisio(2000)提示出这一关联,并将此物种命名为“机器智人”(robo sapiens)。将机器人和智人视为本质上相同的压力,产生出将这种视为人类进化终点的进步叙事。
无论预测中的未来是否如所设想般发生,其效果是形塑了当下我们对人类的理解。那些想要论证人性之独特性的学者,如Fukuyama(2002),都有意无意地被迫专注于那些机器最不可能享有的人类特征。另外一些展望到人类与机器终将融合的学者,如Moravec(1990,1999)和Kurzweil(2000),不去强调智能机器不与人性共享的特性,如具身性(embodiment)方面。无论是排斥还是接受机器与人的融合情形,人类与智能机器间的关系都形成了一种奇异的吸引力,定义了可以追溯叙事路径的拓扑空间。不以智能机器为参照描述人类的做法反而变得难以想象。可以说这种视角成为美国等发达国家理解未来的主导框架。不论未来如何,这一视角对于现在的影响都是重要的。稍后我会回到这些问题来评估各种论点和立场。不过首先,我觉得有必要探索围绕STA范式出现的研究中关于融合情境讨论的基础。
行动 (Acting)
Rodney Brooks是定义我们当下与智能机器关系的重要学者之一。Brooks(2002)将对立启发法(oppositional heuristic)描述为他研究方法的核心。他寻找了一个因广为接受而甚至未被研究共同体讨论过的前提假设;而后提出这个“不言而喻的事实”并不为真。当他第一次开始研究时,研究人员认为人工智能应该以有意识的人类思想建模。例如,让机器人穿过房间,应该要有房间的再现(representation),以及计算机器人的每个移动的方法,好将其映射到再现上去。Brooks认为这种自上而下的方法太局限了。他看到了朋友兼学生Hans Moravec设计的机器人穿过房间的方法。
机器人需要强大的计算能力和花费数小时才能实施的策略:每次移动,它都会停下来,找出自己所处的位置,然后计算下一个移动。与此同时,如果有人进入房间,而机器人正处于导航过程中,它将无可救药地被踢出并被迫重启。Brooks认为,蟑螂完全不可能拥有机器人那么强大的计算能力,但它可以在很短的时间内完成同样的任务。正如Brooks所看到的那样,问题出于这样一个前提假设:机器人必须以世界的再现为基础来工作。
相反,Brooks的对立性策略是自下而上的,而非自上而下的。他的灵感之一(Brooks,2002,pp.17-21)来自威廉·格雷·沃尔特(William Gray Walter)在20世纪40年代制造的一种名为电动陆龟的小型机器人,它可以稳健地导航,当电池电量不足时,它们可以回航充电。在此之后,Brooks开始设计机器人,这些机器人可以在没有核心再现(central representation)的条件下稳健地移动;他喜欢说这些机器人“把世界本身作为自己最好的模型”。
他引入他称之为“包容架构”(subsumption architecture)的设计原则,机器人依据等级结构创建,在这个结构中,当更高层级想要控制低层级时,可以包容低层级的角色。如果没有这种控制,较低层级会继续按程序运行,而不觉得有必要让每一次移动都遵从高层级的指令。每个层级都被建构成一个简单的有限状态机器,有特定的行为任务,内存非常有限,RAM(随机存取储存器)通常小于1千字节。半自主的层级或多或少地独立于其他层级执行程序。该架构非常稳健,因为一旦有一个层级无法按计划工作,其他层级还可以继续运行。不存在一个对应于有意识的大脑的中心单元,只存在一个小模块,在不同层级的命令相互干扰时判定冲突。也不存在任何核心再现;每一层“看”的是不同的世界,而不需要与其他层的视域协调一致。